hdparm
provides a command line interface to various hard disk ioctls
supported by the stock Linux ATA/IDE device driver subsystem.
Some options may work correctly only with the latest kernels.
For best results, compile hdparm with the include files from the latest kernel source code.
OPTIONS
When no flags are given,
-acdgkmnru
is assumed.
-a
Get/set sector count for filesystem read-ahead. This is used to improve
performance in sequential reads of large files, by prefetching additional
blocks in anticipation of them being needed by the running task.
In the current kernel version (2.0.10) this has a default setting
of 8 sectors (4KB). This value seems good for most purposes,
but in a system where most file accesses are random seeks,
a smaller setting might provide better performance.
Also, many IDE drives also have a separate built-in read-ahead function,
which alleviates the need for a filesystem read-ahead in many situations.
-A
Disable/enable the IDE drive's read-lookahead feature (usually ON by default).
Usage:
-A0
(disable) or
-A1
(enable).
-b
Get/set bus state.
-B
Set Advanced Power Management feature, if the drive supports it. A low value
means aggressive power management and a high value means better performance. A value of 255 will disable apm on the drive.
-c
Query/enable (E)IDE 32-bit I/O support. A numeric parameter can be
used to enable/disable 32-bit I/O support:
Currently supported values include
0
to disable 32-bit I/O support,
1
to enable 32-bit data transfers, and
3
to enable 32-bit data transfers with a special
sync
sequence required by many chipsets. The value
3
works with nearly all
32-bit IDE chipsets, but incurs slightly more overhead.
Note that "32-bit" refers to data transfers across a PCI or VLB bus to the
interface card only; all (E)IDE drives still have only a 16-bit connection
over the ribbon cable from the interface card.
-C
Check the current IDE power mode status, which will always be one of
unknown
(drive does not support this command),
active/idle
(normal operation),
standby
(low power mode, drive has spun down),
or
sleeping
(lowest power mode, drive is completely shut down).
The
-S, -y, -Y,
and
-Z
flags can be used to manipulate the IDE power modes.
-d
Disable/enable the "using_dma" flag for this drive. This option now works
with most combinations of drives and PCI interfaces which support DMA
and which are known to the kernel IDE driver.
It is also a good idea to use the appropriate
-X
option in combination with
-d1
to ensure that the drive itself is programmed for the correct DMA mode,
although most BIOSs should do this for you at boot time.
Using DMA nearly always gives the best performance,
with fast I/O throughput and low CPU usage.
But there are at least a few configurations of chipsets and drives
for which DMA does not make much of a difference, or may even slow
things down (on really messed up hardware!). Your mileage may vary.
--direct
Use the kernel O_DIRECT flag when performing a
-t
timing test. This bypasses the page cache, causing the reads
to go directly from the drive into hdparm's buffers, using so-called
"raw" I/O. In many cases, this can produce results that appear
much faster than the usual page cache method, giving a better indication
of raw device and driver performance.
-D
Enable/disable the on-drive defect management feature,
whereby the drive firmware tries to automatically manage
defective sectors by relocating them to "spare" sectors
reserved by the factory for such.
-E
Set cdrom speed. This is NOT necessary for regular operation,
as the drive will automatically switch speeds on its own.
But if you want to play with it, just supply a speed number
after the option, usually a number like 2 or 4.
-f
Sync and flush the buffer cache for the device on exit.
This operation is also performed as part of the
-t
and
-T
timings.
-g
Display the drive geometry (cylinders, heads, sectors),
the size (in sectors) of the device,
and the starting offset (in sectors) of the device from
the beginning of the drive.
-h
Display terse usage information (help).
-i
Display the identification info that was obtained from the drive at
boot time,
if available.
This is a feature of modern IDE drives,
and may not be supported by older devices.
The data returned may or may not be current, depending on activity
since booting the system.
However, the current multiple sector mode count is always shown.
For a more detailed interpretation of the identification info,
refer to
AT Attachment Interface for Disk Drives
(ANSI ASC X3T9.2 working draft, revision 4a, April 19/93).
-I
Request identification info directly from the drive,
which is displayed in a new expanded format with considerably
more detail than with the older
-i
flag.
--Istdin
This is a special "no seatbelts" variation on the
-I
option,
which accepts a drive identification block as standard input
instead of using a /dev/hd* parameter.
The format of this block must be
exactly
the same as that found in the /proc/ide/*/hd*/identify "files",
or that produced by the
--Istdout
option described below.
This variation is designed for use with collected "libraries" of drive
identification information, and can also be used on ATAPI
drives which may give media errors with the standard mechanism.
--Istdout
This option simply dumps the identify data in hex to stdout,
in a format similar to that from /proc/, and suitable for
later use with the
--Istdin
option.
-k
Get/set the keep_settings_over_reset flag for the drive.
When this flag is set, the driver will preserve the
-dmu
options over a soft reset, (as done during the error recovery sequence).
This flag defaults to off,
to prevent drive reset loops which could be caused by combinations of
-dmu
settings. The
-k
flag should therefore only be set after one has achieved confidence in
correct system operation with a chosen set of configuration settings.
In practice, all that is typically necessary to test a configuration
(prior to using -k) is to verify that the drive can be read/written,
and that no error logs (kernel messages) are generated in the process
(look in /var/adm/messages on most systems).
-K
Set the drive's keep_features_over_reset flag. Setting this enables
the drive to retain the settings for
-APSWXZ
over a soft reset (as done during the error recovery sequence).
Not all drives support this feature.
-L
Set the drive's doorlock flag. Setting this to
1
will lock the door mechanism of some removable hard drives
(eg. Syquest, ZIP, Jazz..), and setting it to
0
will unlock the door mechanism. Normally, Linux
maintains the door locking mechanism automatically, depending on drive usage
(locked whenever a filesystem is mounted). But on system shutdown, this can
be a nuisance if the root partition is on a removeable disk, since the root
partition is left mounted (read-only) after shutdown. So, by using this
command to unlock the door
after
the root filesystem is remounted read-only, one can then remove the cartridge
from the drive after shutdown.
-m
Get/set sector count for multiple sector I/O on the drive. A setting of
0
disables this feature. Multiple sector mode (aka IDE Block Mode), is a feature
of most modern IDE hard drives, permitting the transfer of multiple sectors per
I/O interrupt, rather than the usual one sector per interrupt. When this
feature is enabled, it typically reduces operating system overhead for disk
I/O by 30-50%. On many systems, it also provides increased data throughput
of anywhere from 5% to 50%. Some drives, however
(most notably the WD Caviar series),
seem to run slower with multiple mode enabled. Your mileage may vary.
Most drives support the minimum settings of
2, 4, 8, or 16 (sectors). Larger settings may also be possible, depending on
the drive. A setting of 16 or 32 seems optimal on many systems.
Western Digital recommends lower settings of 4 to 8 on many of their drives,
due tiny (32kB) drive buffers and non-optimized buffering algorithms.
The
-i
flag can be used to find the maximum setting supported by an installed drive
(look for MaxMultSect in the output).
Some drives claim to support multiple mode, but lose data at some settings.
Under rare circumstances, such failures can result in
massive filesystem corruption.
-M
Get/set Automatic Acoustic Management (AAM) setting. Most modern harddisk drives
have the ability to speed down the head movements to reduce their noise output.
The possible values are between 0 and 254. 128 is the most quiet (and therefore
slowest) setting and 254 the fastest (and loudest). Some drives have only two
levels (quiet / fast), while others may have different levels between 128 and 254.
At the moment, most drives only support 3 options, off, quiet, and fast.
These have been assigned the values 0, 128, and 254 at present, respectively,
but integer space has been incorporated for future expansion, should this change.
-n
Get or set the "ignore write errors" flag in the driver.
Do NOT play with this without grokking the driver source code first.
-p
Attempt to reprogram the IDE interface chipset for the specified PIO mode,
or attempt to auto-tune for the "best" PIO mode supported by the drive.
This feature is supported in the kernel for only a few "known" chipsets,
and even then the support is iffy at best. Some IDE chipsets are unable
to alter the PIO mode for a single drive, in which case this flag may cause
the PIO mode for
both
drives to be set. Many IDE chipsets support either fewer or more than the
standard six (0 to 5) PIO modes, so the exact speed setting that is actually
implemented will vary by chipset/driver sophistication.
Use with extreme caution!
This feature includes zero protection for the unwary,
and an unsuccessful outcome may result in
severe filesystem corruption!
-P
Set the maximum sector count for the drive's internal prefetch mechanism.
Not all drives support this feature.
-q
Handle the next flag quietly, suppressing normal output. This is useful
for reducing screen clutter when running from system startup scripts.
Not applicable to the
-i
or
-v
or
-t
or
-T
flags.
-Q
Set tagged queue depth (1 or greater), or turn tagged queuing off (0).
This only works with the newer 2.5.xx (or later) kernels, and only with
the few drives that currently support it.
-r
Get/set read-only flag for the device. When set, Linux disallows write operations on the device.
-R
Register an IDE interface.
Dangerous.
See the
-U
option for more information.
-S
Set the standby (spindown) timeout for the drive. This value is used
by the drive to determine how long to wait (with no disk activity)
before turning off the spindle motor to save power. Under such
circumstances, the drive may take as long as 30 seconds to respond to
a subsequent disk access, though most drives are much quicker. The
encoding of the timeout value is somewhat peculiar. A value of zero
means "timeouts are disabled": the device will not automatically enter
standby mode. Values from 1 to 240 specify multiples of 5 seconds,
yielding timeouts from 5 seconds to 20 minutes. Values from 241 to
251 specify from 1 to 11 units of 30 minutes, yielding timeouts from
30 minutes to 5.5 hours. A value of 252 signifies a timeout of 21
minutes. A value of 253 sets a vendor-defined timeout period between 8
and 12 hours, and the value 254 is reserved. 255 is interpreted as 21
minutes plus 15 seconds. Note that some older drives may have very
different interpretations of these values.
-T
Perform timings of cache reads for benchmark and comparison purposes.
For meaningful results, this operation should be repeated 2-3 times
on an otherwise inactive system (no other active processes) with at
least a couple of megabytes of free memory. This displays the speed
of reading directly from the Linux buffer cache without disk access.
This measurement is essentially an indication of the throughput of the
processor, cache, and memory of the system under test.
If the
-t
flag is also specified, then a correction factor based on the outcome of
-T
will be incorporated into the result reported for the
-t
operation.
-t
Perform timings of device reads for benchmark and comparison purposes.
For meaningful results, this operation should be repeated 2-3 times on
an otherwise inactive system (no other active processes) with at least a
couple of megabytes of free memory. This displays the speed of reading
through the buffer cache to the disk without any prior caching of data.
This measurement is an indication of how fast the drive can sustain
sequential data reads under Linux, without any filesystem overhead. To
ensure accurate measurements, the buffer cache is flushed during the
processing of
-t
using the BLKFLSBUF ioctl.
If the
-T
flag is also specified, then a correction factor based on the outcome of
-T
will be incorporated into the result reported for the
-t
operation.
-u
Get/set interrupt-unmask flag for the drive. A setting of
1
permits the
driver to unmask other interrupts during processing of a disk interrupt,
which greatly improves Linux's responsiveness and eliminates "serial port
overrun" errors.
Use this feature with caution:
some drive/controller combinations do
not tolerate the increased I/O latencies possible when this feature is enabled,
resulting in
massive filesystem corruption.
In particular,
CMD-640B
and
RZ1000
(E)IDE interfaces can be
unreliable
(due to a hardware flaw) when this option is used with kernel versions earlier
than 2.0.13. Disabling the
IDE prefetch
feature of these interfaces (usually a BIOS/CMOS setting)
provides a safe fix for the problem for use with earlier kernels.
-U
Un-register an IDE interface.
Dangerous.
The companion for the
-R
option.
Intended for use with hardware made specifically for hot-swapping (very rare!).
Use with knowledge and
extreme caution
as this can easily hang or damage your system.
The hdparm source distribution includes a 'contrib' directory with
some user-donated scripts for hot-swapping on the UltraBay of a ThinkPad 600E.
Use at your own risk.
-v
Display all settings, except -i (same as -acdgkmnru for IDE, -gr for SCSI or
-adgr for XT). This is also the default behaviour when no flags are specified.
-w
Perform a device reset (DANGEROUS). Do NOT use this option.
It exists for unlikely situations where a reboot might otherwise be
required to get a confused drive back into a useable state.
-W
Disable/enable the IDE drive's write-caching feature
(default state is undeterminable; manufacturer/model specific).
-x
Tristate device for hotswap (DANGEROUS).
-X
Set the IDE transfer mode for newer (E)IDE/ATA drives.
This is typically used in combination with
-d1
when enabling DMA to/from a drive on a supported interface chipset, where
-X mdma2
is used to select multiword DMA mode2 transfers and
-X sdma1
is used to select simple mode 1 DMA transfers.
With systems which support UltraDMA burst timings,
-X udma2
is used to select UltraDMA mode2 transfers (you'll need to prepare
the chipset for UltraDMA beforehand).
Apart from that, use of this flag is
seldom necessary
since most/all modern IDE drives default to their fastest PIO transfer mode
at power-on. Fiddling with this can be both needless and risky.
On drives which support alternate transfer modes,
-X
can be used to switch the mode of the drive
only.
Prior to changing the transfer mode, the IDE interface should be jumpered
or programmed (see
-p
flag)
for the new mode setting to prevent loss and/or corruption of data.
Use this with extreme caution!
For the PIO (Programmed Input/Output)
transfer modes used by Linux, this value is simply the desired
PIO mode number plus 8.
Thus, a value of 09 sets PIO mode1, 10 enables PIO mode2,
and 11 selects PIO mode3.
Setting 00 restores the drive's "default" PIO mode, and 01 disables IORDY.
For multiword DMA, the value used is the desired DMA mode number
plus 32. for UltraDMA, the value is the desired UltraDMA mode number
plus 64.
-y
Force an IDE drive to immediately enter the low power consumption
standby
mode, usually causing it to spin down.
The current power mode status can be checked using the
-C
flag.
-Y
Force an IDE drive to immediately enter the lowest power consumption
sleep
mode, causing it to shut down completely. A hard or soft reset
is required before the drive can be accessed again
(the Linux IDE driver will automatically handle issuing a reset if/when needed).
The current power mode status can be checked using the
-C
flag.
-z
Force a kernel re-read of the partition table of the specified device(s).
-Z
Disable the automatic power-saving function of certain Seagate drives
(ST3xxx models?), to prevent them from idling/spinning-down
at inconvenient times.
ATA Security Feature Set
These switches are DANGEROUS to experiment with, and might not work with every
kernel.
USE AT YOUR OWN RISK.
--security-help
Display terse usage info for all of the --security-* flags.
--security-freeze
Freeze the drive's security settings.
The drive does not accept any security commands until next power-on reset.
Use this function in combination with --security-unlock to protect drive
from any attempt to set a new password. Can be used standalone, too.
--security-unlock PWD
Unlock the drive, using password PWD.
Password is given as an ASCII string and is padded with NULs to reach 32 bytes.
The applicable drive password is selected with the --user-master switch.
THIS FEATURE IS EXPERIMENTAL AND NOT WELL TESTED. USE AT YOUR OWN RISK.
--security-set-pass PWD
Lock the drive, using password PWD (Set Password) (DANGEROUS).
Password is given as an ASCII string and is padded with NULs to reach 32 bytes.
The applicable drive password is selected with the --user-master switch and the
applicable security mode with the --security-mode switch.
THIS FEATURE IS EXPERIMENTAL AND NOT WELL TESTED. USE AT YOUR OWN RISK.
--security-disable PWD
Disable drive locking, using password PWD.
Password is given as an ASCII string and is padded with NULs to reach 32 bytes.
The applicable drive password is selected with the --user-master switch.
THIS FEATURE IS EXPERIMENTAL AND NOT WELL TESTED. USE AT YOUR OWN RISK.
--security-erase PWD
Erase (locked) drive, using password PWD (DANGEROUS).
Password is given as an ASCII string and is padded with NULs to reach 32 bytes.
The applicable drive password is selected with the --user-master switch.
THIS FEATURE IS EXPERIMENTAL AND NOT WELL TESTED. USE AT YOUR OWN RISK.
--security-erase-enhanced PWD
Enhanced erase (locked) drive, using password PWD (DANGEROUS).
Password is given as an ASCII string and is padded with NULs to reach 32 bytes.
The applicable drive password is selected with the --user-master switch.
THIS FEATURE IS EXPERIMENTAL AND NOT WELL TESTED. USE AT YOUR OWN RISK.
--user-master USER
Specifies which password (user/master) to select.
Defaults to master.
Only useful in combination with --security-unlock, --security-set-pass,
--security-disable, --security-erase or --security-erase-enhanced.
u user password
m master password
THIS FEATURE IS EXPERIMENTAL AND NOT WELL TESTED. USE AT YOUR OWN RISK.
--security-mode MODE
Specifies which security mode (high/maximum) to set.
Defaults to high.
Only useful in combination with --security-set-pass.
h high security
m maximum security
THIS FEATURE IS EXPERIMENTAL AND NOT WELL TESTED. USE AT YOUR OWN RISK.
BUGS
As noted above, the
-m sectcount
and
-u 1
options should be used with caution at first, preferably on a
read-only filesystem. Most drives work well with these features, but
a few drive/controller combinations are not 100% compatible. Filesystem
corruption may result. Backup everything before experimenting!
Some options (eg. -r for SCSI) may not work with old kernels as
necessary ioctl()'s were not supported.
Although this utility is intended primarily for use with (E)IDE hard disk
devices, several of the options are also valid (and permitted) for use with
SCSI hard disk devices and MFM/RLL hard disks with XT interfaces.
The Linux kernel up until 2.6.12 (and probably later) doesn't handle the
security unlock and disable commands gracefully and will segfault and in some
cases even panic. The security commands however might indeed have been executed
by the drive. This poor kernel behaviour makes the PIO data security commands
rather useless at the moment.
Note that the "security erase" and "security disable" commands have been
implemented as two consecutive PIO data commands and will not succeed on a
locked drive because the second command will not be issued after the segfault.
See the code for hints how patch it to work around this problem. Despite the
segfault it is often still possible to run two instances of hdparm
consecutively and issue the two necessary commands that way.
AUTHOR
hdparm
has been written by Mark Lord <mlord@pobox.com>, the original primary
developer and maintainer of the (E)IDE driver for Linux,
with suggestions from many netfolk.
The disable Seagate auto-powersaving code
is courtesy of Tomi Leppikangas(tomilepp@paju.oulu.fi).
Security freeze command by Benjamin Benz <bbe@heise.de>, 2005.
PIO data out security commands by Leonard den Ottolander
<leonard den ottolander nl>, 2005.
Parts by Benjamin Benz <bbe@heise.de> and others.